

THE PROJECT

The **repair service** provided for <u>Save The Duck S.p.A.</u> by <u>PRISM</u> SRL Società Benefit offers a smart solution to extend the lifespan of products. In 2025, a Life Cycle Assessment (LCA) was conducted on the repair of a zipper in a DAISY/DONALD jacket. This study, carried out in collaboration with Save The Duck S.p.A. and PRISM SRL Società Benefit, followed the Environmental Footprint (EF) 3.1 methodology and adopted a cradle-to-grave system boundary. The **climate change impact** resulting from the repair was calculated at 0.41 kg CO₂-equivalents per one year of use, based on an extended product lifetime of 15 years due to the repair. Of the total impact, 73.8% is attributed to the jacket's manufacturing phase, while 14.1% is related to its use phase, primarily due to washing. Notably, 64.4% of the overall environmental impact stems from raw material production, and 11.1% is due to electricity consumption. This pilot is part of the circular projects featured in SDA Bocconi's Monitor for Circular Fashion 2025. In this project MUSA Spoke 5 Bocconi researchers was a knowledge partner.

METHODOLOGICAL ELEMENTS

HOW MUCH 0,54 Kg

HOW WELL

The product is designed for insulation and for keeping body heat

HOW LONG 15 years

transition to circular business

models and enable more

effective material recovery

Functional Unit:
1 DONALD/DAISY jacket with repaired zipper Composition:
100% polyamide shell and lining
100% polyester for padding

System Boundary: From cradle to grave

Impact Categories: Climate Change

Methods: FF 3.1

Background Datasets: Ecoinvent ver 3.10

LCA RESULTS (KIMPI - KEY IMPACT INDICATORS) AND HOTSPOTS

KIMPI	UOM	JACKET MANUFACTURING	USE PHASE (WASHING)	USE PHASE (REPAIR HUB)	END OF LIFE	TOTAL
RAW MATERIALS	%	63,6%		0,8%		64,4%
CHEMICALS	%		6,9%			6,9%
PACKAGING	%	6,4%				6,4%
ALLOCATED WATE	ER %	0,5%	1,1%			1,6%
THERMAL ENERGY	/ %					
ELECTRIC ENERGY	/ %	3,7%	3,3%	4,1%		11,1%
TRANSPORTS	%		2,2%	0,1%	2,2%	4,5%
EMISSIONS TO AIR	₹ %					
EMISSIONS TO WATER	%					
WASTE PRODUCE	D %			0,2%	4,7%	4,9%
WASTEWATER	%		0,3%			0,3%
TOTAL	%	73,8%	14,1%	5,3%	6,8%	100%

This impact distribution is based on the assumption that the entire use phase spans 15 years.

GLOSSARY

Environmental impact
Environmental impact:
any modification of the
environment, adverse or
beneficial, total or partial,
caused in whole or in
part by the environmental
aspects of an organization.

ISO 14040:2006

Climate change Climate change: change in climate that persists for an

extended period, typically decades or longer. ISO 14050:2020

0,41 (gCO₂eq/unit per year of use

POSSIBLE IMPROVEMENTS

lifespan of garments.

MATERIAL QUANTITY Reduce the total quantity of materials employed for the production of the jacket	TYPE OF MATERIAL Use of less impactful material (if durability performances are equal) and the use of primary data in LCA studies is beneficial	ELECTRIC ENERGY Optimize processes to reduce the use of electric energy (efficiency). Use of certified renewable energy mix.
CUSTOMIZATION Offer a personalization service can help extend the	UPCYCLING Upcycling services help extend product lifespans	TAKE-BACK PROGRAM Establish a take-back program to support the

while reducing their

per-year-of-use basis.

environmental impact on a

Educate consumers to wash less and using low temperature programs

USE PHASE: WASHING

A 3rd party has not reviewed this result according to ISO 14040 and 14044 standards. It should therefore not be used for public disclosure of comparative assertions

